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Abstract. We have identified some trouble in the article ‘A Penalty Function Approach for
Solving Bi-Level Linear Programms’ (J. Global Optimization 3: 397–419). The primal and dual
compactness assumption considered is not valid. The set of cuts used in the algorithm to discard
local optima is not well-defined. The test to identify possible remaining better solutions is not
accurate. We redefine the cut set and correct the test. We obtain good properties for the penalized
problem without assuming compactness. However, we note that the global algorithm even needs a
dual compactness assumption to be well-defined. Examples are given to illustrate the remarks in
the article.
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1. Introduction

The Linear Bilevel Programming Problem (LBPP) is a strongly NP-Hard problem
[8] that has attracted much interest lately. Several solution methods have been
proposed in the literature (see p.e. [3, 13]).

In this note we focus our attention on the article of White and Anandalingam [14].
The authors consider the following linear bilevel problem:

(P) max F(x, y) 5 ax 1 by (1)
(x, y)

s.t. : x > 0, y solves: (2)

max f(x, y) 5 cx 1 dy (3)
y

s.t. : Ax 1 By < p, y > 0 (4)

n n m m3n m3n1 2 1 2where a, c, x [ R , b, d, y [ R , p [ R , A [ R and B [ R . The general
formulation of the LBPP may add to (2) linear constraints involving x and y.
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The higher level problem, which controls the decision variable x, is called the
leader’s problem. For each value of x, the lower level problem, which controls the
decision variable y, is the follower’s problem. Once x is given the follower’s
objective function (3) can be reduced to dy. Thus the follower’s dual problem,

mdefined in the dual variable w [ R , is:

(D) min w( p 2 Ax) (5)
w

s.t. : wB > d, w > 0 (6)

Problem (P) is nonconvex, since its feasible region is nonconvex [4]. Further-
more, it may have local optima.

In [14] White and Anandalingam develop a penalty function approach for solving
(P) globally. In order to obtain theoretical results and the well-definition of the
algorithm, they introduce two hypotheses:

[A1] If x* is an optimal solution for the leader, then arg minhdy : By < p 2 Ax*,
y > 0j is a singleton.

[A2] The following sets are non-empty bounded polyhedra:

Z 5 h(x, y) > 0 : Ax 1 By < pj , W 5 hw > 0 : wB > dj . (7)

We have identified some problems with the approach developed in [14]. As it is
shown in the next section, polyhedra Z and W cannot be simultaneously bounded.
Therefore assumption [A2] is not valid, which causes both theoretical and numerical
troubles in [14]. Another problem arises from the set of cuts used to discard local
optima. It is not well-defined even under assumptions [A1] and [A2]. Moreover, the
test to identify possible remaining better solutions is not accurate.

In the following section we describe the White and Anandalingam’s approach. In
Section 3 we replace the hypotheses given in [14] by a weaker one and obtain the
same theoretical properties. In Section 4 we punctuate the trouble with the
algorithm. Problems with the cuts are overcome by modifying the set definition and
correcting the test to recognize the attainment of a solution to the penalized problem.
However the complete well-definition of the algorithm is only assured under a
compactness assumption. The examples of Section 5 illustrate all these observations.
We finish with a conclusion section.

2. A penalty function approach

Let us denote by Z , W and (Z 3 W ) the sets of extreme points of Z, W and Z 3 Wv v v

respectively. For every (x, y, w) [ Z 3 W let us define the nonnegative duality gap
p(x, y, w) 5 w( p 2 Ax) 2 dy.

Given (x, y, w) [ Z 3 W, if p(x, y, w) 5 0 then (x, y) is a feasible solution to (P).
Conversely, if (x, y) [ Z is feasible to (P) then p(x, y, w) 5 0 for some w [ W. Thus,
a penalty problem for (P) is given by:
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ˆP(K) max F(x, y, w, K) 5 ax 1 by 2 Kp(x, y, w) (8)
(x, y,w)

s.t. : (x, y) [ Z , w [ W (9)

where the duality gap is introduced in the leader’s objective function by a penalty
parameter K [ R .1

Under assumptions [A1] and [A2], White and Anandalingam [14] state Theorems
1–4 below. In fact assumption [A1] is only used in Theorem 3 (the proofs can be
found in [1]).

THEOREM 1. For a given value of w [ W and fixed K [ R , define:1

ˆQ(w, K) 5maxhF(x, y, w, K) : (x, y) [ Zj . (10)
x, y

mThen Q(?, K) is convex on R and the solution to the problem

maxhQ(w, K) : w [ Wj (11)
w

will occur at some w* [ W .v

THEOREM 2. For a fixed K [ R , an optimal solution to P(K) is achievable in1

Z 3 W and Z 3 W 5 (Z 3 W ) .v v v v v

THEOREM 3. There exists a finite value K* [ R of K for which an optimal1

solution to the penalty problem P(K) yields an optimal solution to the problem (P),
for all K > K*.

THEOREM 4. If (x(K), y(K), w(K)) solves P(K) as a function of K, then both the
leader’s objective F(x(K), y(K)) and the duality gap p(x(K), y(K), w(K)) of the
follower’s problem are monotonically nonincreasing in the value of the penalty
parameter K.

Nevertheless, assumption [A2] is not suitable as it can be seen from the next
result given in [6]:

THEOREM 5. If Y 5 hy : By < q, y > 0j is nonempty and bounded, then W 5

hw : wB > d, w > 0j is nonempty and unbounded; also if W is nonempty and
bounded then Y is nonempty and unbounded.

3. A weaker assumption

In this section we claim to obtain the same results stated in Theorems 1–4 under a
different assumption. Initially note that the first part of Theorem 1 is valid

mindependently of [A1] or [A2], i.e. Q(?, K) is convex on R for each K > 0 (see
[10], Theorem 5.5). Its second part is included in Theorem 2.
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Let us consider the leader relaxation:
]

(P) maxhax 1 by : (x, y) [ Zj

From now on, instead of [A1] and [A2] we assume that:
]

[A] W ± 5 and (P) has an optimal solution.

THEOREM 6. For a fixed K [ R , there exists a solution to P(K) which is1

achievable in (Z 3 W ) .v

Proof. For the moment we replace ‘max’ by ‘sup’ in (8), (10) and (11). As P(K)
is also defined by (11), we have:

suphQ(w, K) : w [ Wj
suphax 1 by 2 Kp(x, y, w) : (x, y, w) [ Z 3 Wj
< suphax 1 by : (x, y, w) [ Z 3 Wj 5 maxhax 1 by : (x, y) [ Zj .

Moreover Q(?, K) is convex and W is a non-empty polyhedron. Then the supremum
is attained at some w* [ W (see [10], Corollary 32.3.4). Applying the samev

ˆargumentation to F(?, ?, w*, K) and Z, a solution to (10) occurs at some (x*, y*) [
Z . And since Z 3 W 5 (Z 3 W ) , the result follows.v v v v

THEOREM 7. There exists a finite value K* [ R of K for which an extreme1

optimal solution to the penalty function problem P(K) yields an extreme optimal
solution to the problem (P), for all K > K*.

Proof. From Theorem 6 there is a solution to P(K) in (Z 3 W ) for each K [ R .v 1
0Split (Z 3 W ) into two finite sets S 5 h(x, y, w) [ (Z 3 W ) : p(x, y, w) 5 0j andv v

1 0 0S 5 (Z 3 W ) \S . Since W ± 5 and Z ± 5, we have S ± 5. Let L 5v
0 1ˆmaxhF(x, y, w, K) : (x, y, w) [ S j. Suppose S ± 5 and take

1K* . maxh(ax 1 by 2 L) /p(x, y, w) : (x, y, w) [ S j . (12)
1Therefore, ax 1 by 2 K*p(x, y, w) , L, for all (x, y, w) [ S . Thus, for K > K*,

ˆmaxhF(x, y, w, K) : (x, y, w) [ (Z 3 W ) jv (13)
1ˆ5 maxhL, maxhF(x, y, w, K) : (x, y, w) [ S jj 5 L .

Moreover, from the strict inequality in (12), any solution to (13), for K > K*, must
0belong to S . Therefore, it is a solution to (P) (see [2], Corollary of Theorem 9.2.2).

1The same conclusions are trivially obtained for K* > 0 when S 5 5.
Finally, Theorem 4 holds as a consequence of Theorem 6. It is a known result of

penalty methods (see [2], Lemma 9.2.1).

4. The algorithm

For given K [ R and w [ W, let (x(w, K), y(w, K)) be a solution to (10). And for1

each u [ W define:
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F(u, w, K) 5 (u 2 w)( p 2 Ax(w, K))
(14)

5 p(x(w, K), y(w, K), u) 2 p(x(w, K), y(w, K), w) .

The algorithm in [14] is defined as follows:

Step 0 :
1 1 1 1]Choose K (large) and w [ W , Q 5 2`, w 5 w .v

Step 1 :
1Find Q(w , K).

1 1 1 1 1Obtain (x(w , K), y(w , K)) and set Q 5 maxhQ , Q(w , K)j and

1 1 1w if Q(w , K) . Q1]w 5H 1 1 1]w if Q(w , K) < Q

Step 2 :
1s 1 1Let hw j be the adjacent vertices of w , 1 < s < N(w ).
1s 1If Q(w , K) . Q for some s, then

1 1s 1 1set w 5 w , Q 5 Q(w , K) and repeat Step 2.

Step 3 :
1s 1If Q(w , K) < Q , ;s,

1 1Find G(w , K) 5 minhF(w, w , K) : w [ Wj.
1Obtain w*(w , K).

Step 4 :
1 1 1If G(w , K) , 0 then set w 5 w*(w , K), and

Go to Step 1.

Step 5 :
1If G(w , K) > 0

1s 1extend unit rays ht j along the edges from w , and find
1 1s 1 1a 5 maxha > 0 : Q(w 1 at , K) < Q j, 1 < s < N(w ).s

Step 6 :
1s 1 1s 1Let n 5 w 1 a t , 1 < s < N(w ),s

1 m11 1
L(w ) 5 hl 5 (m, s) [ R : s [ h1, 21j, mw 2 s < 0,

1s 1mn 2 s > 0, 1 < s < N(w )j
and, for w [ W :

1 1G(w, w ) 5 minhmw 2 s : l [ L(w )j.

Step 7 :
1 1Let w * [ arg maxhG(w, w ) : w [ Wj.
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Step 8 :
1 1If G(w *, w ) < 0 then

1]w [ arg maxhQ(w, K) : w [ Wj, and the optimal value of Q(?, K) is reached for the
1 1] ]particular K, with the solution (x(w , K), y(w , K)).

Then Go to Step 10.

Step 9 :
1 1 1 1If G(w *, w ) . 0, set w 5 w *, and

Go to Step 1.

Step 10 :
1 1 1] ] ]If p(x(w , y(w ), w ) . 0, set K 5 K 1 D, and Go to Step 1.

1 1 1 1 1] ] ] ] ]Otherwise p(x(w ), y(w ), w ) 5 0 and (x(w ), y(w )) solves P(K).

The first four steps find a local optimum to Q(?, K) as described in [14]. Note that
they are still well-defined if we consider [A] instead of [A2]. The minimum in Step
3 is always attained by (14) and since p(x, y, w) > 0 for all (x, y, w) [ Z 3 W. In

1 1 1 1 1 1particular G(w , K) 5 0 with w*(w , K) 5 w when p(x(w , K), y(w , K), w ) 5 0.
Steps 5–9 are modifications of the original algorithm proposed by Tuy [11]. Steps

1 1s 15 and 6 define cuts to discard the local optimum w . The points n are Q -
1s 1extensions of the vertices w with respect to w (Def.V.1 in [9]). Each steplength as

1s 1along the ray t (1 < s < N(w )) is equal to the optimal value of the following linear
programming problem (see Prop. IX.3 in [9]):

1 1 1a 5 min (Q 1 Kw p)r 2 (a 1 Kw A)u 2 (b 1 Kd)v (15)s
(r,u,v)

1s 1ss.t.: K(t p)r 2 K(t A)u 5 21 (16)

2pr 1 Au 1 Bv < 0 (17)

r > 0, u > 0, v > 0 (18)

n n1 2where u [ R , v [ R , r [ R.
1It is worth mentioning that a . 0 for all s [ [1, N(w )] (see [5]). Furthermore as s

1smay be infinite for some s, where t is a recession direction of W or not (see next
1ssection). In this case it is not possible to define some points n . Actually, such

situation does not depend on the boundness of W or Z. To overcome this difficulty it
1is necessary to redefine the set L(w ), for example as follows:

Step 5 9:
1If G(w , K) > 0

1s 1extend unit rays ht j along the edges from w , and find
1 1s 1 1a 5 supha > 0 : Q(w 1 at , K) < Q j, 1 < s < N(w ).s
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Step 6 9:
1Let I 5 hs : 1 < s < N(w ), a , 1`j,s

1s 1 1sn 5 w 1 a t , ;s [ I,s
1 m11 1

L(w ) 5 hl 5 (m, s) [ R : s [ h1, 21j, mw 2 s < 0,
1s 1smn 2 s > 0, s [ I, mt > 0, s [⁄ Ij

and, for w [ W :
1 1G(w, w ) 5 minhmw 2 s : l [ L(w )j.

1The following proposition shows that the set L(w ) is well-defined.

1PROPOSITION 1. The set L(w ) is non-empty. In particular, there exists (m, s) [
1 1

L(w ) with mw 2 s , 0.
1s 1sProof. Let U 5 hw 5 o r a t 1 o r t : o r > 1, r > 0 ;sj. We haves[I s s s[⁄ I s s s s

0 [⁄ U, since a . 0 for all s [ I, r . 0 for some s, and the convex cone generateds s
1s 1by ht j contains no lines. Consider the closed convex set V5 w 1 U. Therefore,

1w [⁄ V. Thus, there exists a hiperplane defined by (m, s), with s ± 0, such that
1 1s 1 1smw , s and mw > s for all w [V. For each s [ I, n 5 w 1 a t [V, and sos
1s 1 1s 1 1smn > s. Now let s [⁄ I. Since w 1 t [V, it is m(w 1 t ) > s. Then it must be

1s 1mt . 0. Hence, (m, s) [ L(w ).

1The set L(w ) establishes cuts as shown by the next proposition, which justifies
1the definition of G(w, w ) in Step 6.

1PROPOSITION 2. Let w [ W and (m, s) [ L(w ). If mw 2 s , 0 then Q(w, K) <
1

Q .
Proof. Let w [ W. Then there are r > 0 such that:s

r rs s1 1s 1 1s 1s] ]w 5 w 1O r t 5 1 2O w 1O n 1O r t .S Ds sa as s ss[I s[I s[⁄ I

1And the stated condition to (m, s) [ L(w ) gives:

r rs s1 1s 1s] ]0 . mw 2 s 5 1 2O (mw 2 s) 1O (mn 2 s) 1O r mtS D sa as ss[I s[I s[⁄ I

rs 1]> 1 2O (mw 2 s)S Dass[I

1Therefore, 0 < o (r /a ) , 1. Define the convex set D 5 hw [ W : Q(w, K) < Q j.s[I s s
1 1s 1sSince w [ D, n [ D for s [ I, and t are recession directions of D for s [⁄ I, it

must be w [ D.
Steps 7–9 evaluate whether a solution to Q(?, K) is already reached for the fixed

K. However some trouble may happen to Step 7 when W is unbounded or in Step 8
if the equality is verified.

In fact the maximization problem in Step 7 can be formulated in terms of the
j j 1 1vertex set h(m , s ) : 1 < j < T(w )j of L(w ). Let M be the matrix with columns
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j jhm j and q be the row-vector with components hs j. Then the maximization
problem is equivalent to (see [14]):

t 5min 2 qb 2 dg (19)
( b,g )

s.t. : eb 5 1 (20)

Mb 1 Bg < 0 (21)

b > 0, g > 0 (22)

1 1T(w ) n T(w )2where b [ R , g [ R and e 5 (1, 1, . . . , 1) [ R . This formulation can be
solved by the column generation method.

1 1 1When W is bounded t 5 G(w *, w ) for some w * [ W. If t , 0 a solution to
P(K) is already reached for the fixed K by Proposition 2. But if t 5 0 it may exist a
better solution yet (see Example 1). In this case Step 8 will return a wrong result.

1 1Thus, the test G(w *, w ) < 0 must be replaced by the strict inequality. In the case
1 1 1 1that t > 0, we always have w * ± w , since G(w , w ) , 0 by Proposition 1.

Therefore, the algorithm can continue.
If W is unbounded it may be t 5 1` (see Example 2). In this case Step 7 fails. A

1new vertex w * is not available and the algorithm cannot progress. Therefore, in
order to have the algorithm well-defined, the following assumption should be added:

[B] W is compact.
We note that Assumptions [A] and [B] can hold at the same time.

5. Examples

We introduce two examples which illustrate the trouble identified in the algorithm.
In the first one W is bounded. It presents the case where the original Step 6 is not
well-defined, because there is a 5 1` for some s, and the original Step 8 wills

return a wrong solution to P(K), due to t 5 0. In the second example W is
unbounded. We will have again a 5 1` for some s, and Step 7 will fail sinces

t 5 1`.
We now apply the algorithm to these examples. For the calculus details we refer

to [5].

EXAMPLE 1

(E1) max 2 0.4x 2 6y 2 5y1 2
(x, y)

s.t. : x > 0, y 5 ( y , y , y , y ) solves:1 2 3 4

max 0.5y 2 y 2 2y2 3 4y

s.t. : 20.1x 2 y 2 y < 211 2

0.2x 1 1.25y 2 y < 212 4
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2x 1 6y 1 y 2 2y < 11 2 3

y , y , y , y > 01 2 3 4

The follower’s dual feasible set and its set of vertices are:

W 5 hw 5 (w , w , w ) > 0 : 2w 1 6w > 0 ,1 2 3 1 3

2w 1 1.25w 1 w > 0.5, 22w > 21, 2w > 22j1 2 3 3 2

W 5 h2.5, 2, 0.5), (2.4, 2, 0.4), (0, 2, 0.5), (0, 0, 0.5), (0, 2, 0), (0, 0.4, 0)j.v

1Suppose we start the algorithm with w 5 (2.5, 2, 0.5) and K 5 10. At Step 1 we
1 1 1find Q(w , K) 5 25 with (x(w , K), y(w , K)) 5 (0, 0, 1, 0, 2.25). The adjacent

1 11 12vertices of w , evaluated at Step 2, are w 5 (2.4, 2, 0.4), w 5 (0, 2, 0.5) and
13 1sw 5 (0, 0, 0.5). As we have Q(w , K) < 25, 1 < s < 3, we go to Step 3. We obtain

1 1 1 1
G(w , K) 5 0, since p(x(w ), y(w ), w )) 5 0.

11 12 13At Step 5 we find the rays t 5 (20.1, 0, 20.1), t 5 (22.5, 0. 0) and t 5

(22.5, 22, 0). The steplengths along these rays, calculated by (15)–(18), are
respectively a 5 61/55, a 5 3.16 and a 5 1`. Note that we have an infinite1 2 3

steplength, in spite of W be compact.
The set of cuts is defined according to the new Step 6 as:

1
L(w ) 5 h(m , m , m , s) : 2.5m 1 2m 1 0.5m < s ,1 2 3 1 2 3

25.4m 1 2m 1 0.5m > s, 13.14m 1 11m 1 2.14m > 5.5s ,1 2 3 1 2 3

22.5m 2 2m > 0, s [ h1, 21jj .1 2

1 1 2 2Take (m , s ) 5 (0, 20.5, 0, 21) and (m , s ) 5 (22, 2.5, 2, 1), both belonging
1 2 3to L(w ). Let w 5 (0, 2, 0) and w 5 (0, 0.4, 0). Then for each vertex of W we get:

1 1 1 11 1 12 1 2 1m w 5 m w 5 m w 5 m w 5 s
2 13 2 3 2m w 5 m w 5 s

1Therefore, G(w, w ) < 0, for all w [ W. Thus, t < 0 and the algorithm will conclude
1at Step 8 that w is a solution to (11). However, this answer is not correct, since

2
Q(w , K) 5 24.

EXAMPLE 2. (Adapted from [4])

(E2) max x 1 y 2 4y1 2
(x, y)

s.t. : x > 0, y 5 ( y , y ) solves:1 2

max y2y

s.t. : x 1 y 1 y < 31 2

2x 2 y 1 y < 211 2

2x 1 y 1 y < 11 2

x 2 y 1 y < 11 2
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y < 1/22

y > 0, y > 01 2

The follower’s dual feasible set is:

W 5 h(w , w , w , w , w ) > 0:1 2 3 4 5

w 2 w 1 w 2 w > 0, w 1 w 1 w 1 w 1 w > 1j .1 2 3 4 1 2 3 4 5

We have the primal and dual set of vertices:

Z 5 h(0, 1, 0), (0.5, 1, 0.5), (1, 0.5, 0.5), (1, 1.5, 0.5),v

(1.5, 1, 0.5), (2, 1, 0), (1, 2, 0), (1, 0, 0)j
W 5 h(0.5, 0.5, 0, 0, 0), (0.5, 0, 0, 0.5, 0), (0, 0.5, 0.5, 0, 0),v

(0, 0, 0.5, 0.5, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1), (1, 0, 0, 0, 0)j .

1We now start the algorithm with w 5 (0, 0.5, 0.5, 0, 0) and K large enough. At
1 1 1Step 1 we find Q((w , K) 5 1 at (x(w , K), y(w , K)) 5 (0, 1, 0). The adjacent

1 11 12 13vertices of w are w 5 (0.5, 0.5, 0, 0, 0), w 5 (0, 0, 0.5, 0.5, 0), w 5
14 1s(0, 0, 0, 0, 1) and w 5 (0, 0, 1, 0, 0). We have Q(w , K) , 1, 1 < s < 4. Then we

1 1 1 1go to Step 3 to get G(w , K) 5 0, since p(x(w ), y(w ), w )) 5 0.
11 12 13We obtain the rays t 5 (1, 0, 21, 0, 0), t 5 (0, 21, 0, 1, 0), t 5 (0, 21, 21,

14 11 12 13 140, 2), t 5 (0, 21, 1, 0, 0), towards the vertices w , w , w , w , and the
15recession ray t 5 (0, 1, 1, 0, 0). The steplengths, calculated with K 5 10, are

respectively a 5 a 5 0.9, a 5 0.525 and a 5 a 5 1`.1 2 3 4 5

Again we have an infinite steplength. Consequently, we apply the modified Step 6
to define:

1
L(w ) 5 h(m , m , m , m , m , s) : s [ h1, 21j, m 1 m < 2s ,1 2 3 4 5 2 3

9m 1 5m 2 4m > 10s, 24m 1 5m 1 9m > 10s ,1 2 3 2 3 4

2m 2 m 1 42m > 40s, 2m 1 m > 0, m 1 m > 0j .2 3 5 2 3 2 3

The maximization problem at Step 7 can be solved by (19)–(22). If we apply the
first phase of the simplex method, we get an infeasibility. Therefore, t 5 1`, and

1the algorithm cannot progress, since a new vertex w * is not available.

6. Conclusions

We presented modifications to the paper given by White and Anandalingam [14] in
such a way that it preserves its general philosophy but overcomes its difficulties.
The desired theoretical properties of the penalty function approach were obtained
under Assumption [A]. It substitutes the nonvalid hypothesis [A2] and avoids
hypothesis [A1]. The new assumption is used in the literature [4, 7, 8, 12]. The
procedure to find an optimal solution to P(K) was redefined according to Tuy [9].
Assumption [B] was considered to guarantee its convergence. We would note that
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assumptions [A] and [B] could be replaced by the single hypothesis that Z is
nonempty and compact. In fact, instead of function Q( ), the algorithm could use

ˆfunction F(x, y, K) 5 maxhF(x, y, w, K) : w [ Wj, defined for all (x, y) [ Z and
K [ R .1
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